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More rings

This chapter develops a number of other concepts concerning rings. These
concepts will play important roles later in the text, and we prefer to discuss
them now, so as to avoid too many interruptions of the flow of subsequent
discussions.

17.1 Algebras

Let R be a ring. An R-algebra (or algebra over R) is a ring E, together
with a ring homomorphism τ : R → E. Usually, the map τ will be clear
from context, as in the following examples.

Example 17.1. If E is a ring that contains R as a subring, then E is an
R-algebra, where the associated map τ : R → E is just the inclusion map.
2

Example 17.2. Let E1, . . . , En be R-algebras, with associated maps τi :
R → Ei, for i = 1, . . . , n. Then the direct product ring E := E1 × · · · × En

is naturally viewed as an R-algebra, via the map τ that sends a ∈ R to
(τ1(a), . . . , τn(a)) ∈ E. 2

Example 17.3. Let E be an R-algebra, with associated map τ : R → E,
and let I be an ideal of E. Consider the quotient ring E/I. If ρ is the
natural map from E onto E/I, then the homomorphism ρ ◦ τ makes E/I
into an R-algebra, called the quotient algebra of E modulo I. 2

Example 17.4. As a special case of the previous example, consider the ring
R[X], viewed as an R-algebra via inclusion, and the ideal of R generated by
f , where f is a monic polynomial. Then R[X]/(f) is naturally viewed as an
R-algebra, via the map τ that sends c ∈ R to [c]f ∈ R[X]/(f). If deg(f) > 0,
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360 More rings

then τ is an embedding of R in R[X]/(f); if deg(f) = 0, then R[X]/(f) is the
trivial ring, and τ maps everything to zero. 2

In some sense, an R-algebra is a generalization of the notion of an exten-
sion ring. When the map τ : R→ E is a canonical embedding, the language
of R-algebras can be used if one wants to avoid the sloppiness involved in
“identifying” elements of R with their image under τ in E, as we have done
on occasion.

In this text, we will be particularly interested in the situation where E is
an algebra over a field F . In this case, E either contains a copy of F , or
is itself the trivial ring. To see this, let τ : F → E be the associated map.
Then since the kernel of τ is an ideal of F , it must either be {0F } or F . In
the former case, τ is injective, and so E contains an isomorphic copy of F .
In the latter case, our requirement that τ(1F ) = 1E implies that 1E = 0E ,
and so E is trivial.

Subalgebras

Let E be an R-algebra with associated map τ : R→ E. A subset S of E is
a subalgebra if S is a subring containing img(τ). As an important special
case, if τ is just the inclusion map, then a subring S of E is a subalgebra if
and only if S contains R.

R-algebra homomorphisms

There is, of course, a natural notion of a homomorphism for R-algebras.
Indeed, it is this notion that is our main motivation for introducing R-
algebras in this text. If E and E′ are R-algebras, with associated maps
τ : R→ E and τ ′ : R→ E′, then a map ρ : E → E′ is called an R-algebra
homomorphism if ρ is a ring homomorphism, and if for all a ∈ R, we have

ρ(τ(a)) = τ ′(a).

As usual, if ρ is bijective, then it is called an R-algebra isomorphism,
and if R = R′, it is called an R-algebra automorphism.

As an important special case, if τ and τ ′ are just inclusion maps, then a
ring homomorphism ρ : E → E′ is an R-algebra homomorphism if and only
if the restriction of ρ to R is the identity map.

The reader should also verify the following facts. First, an R-algebra
homomorphism maps subalgebras to subalgebras. Second, Theorems 9.22,
9.23, 9.24, 9.25, 9.26, and 9.27 carry over mutatis mutandis from rings to
R-algebras.
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Example 17.5. Since C contains R as a subring, we may naturally view C
as an R-algebra. The complex conjugation map on C that sends a + bi to
a− bi, for a, b ∈ R, is an R-algebra automorphism on C (see Example 9.5).
2

Example 17.6. Let p be a prime, and let F be the field Zp. If E is an
F -algebra, with associated map τ : F → E, then the map ρ : E → E that
sends α ∈ E to αp is an F -algebra homomorphism. To see this, note that
E is either trivial, or contains a copy of Zp. In the former case, there is
nothing really to prove. In the latter case, E has characteristic p, and so
the fact that ρ is a ring homomorphism follows from Example 9.42 (the
“freshman’s dream”); moreover, by Fermat’s little theorem, for all a ∈ F ,
we have τ(a)p = τ(ap) = τ(a). 2

Polynomial evaluation

Let E be an R-algebra with associated map τ : R → E. Any polynomial
g ∈ R[X] naturally defines a function on E: if g =

∑
i giXi, with each gi ∈ R,

and α ∈ E, then

g(α) :=
∑

i

τ(gi)αi.

For fixed α ∈ E, the polynomial evaluation map ρ : R[X] → E sends
g ∈ R[X] to g(α) ∈ E. It is easily verified that ρ is an R-algebra homomor-
phism (where we naturally view R[X] as an R-algebra via inclusion). The
image of ρ is denoted R[α], and is a subalgebra of E. Indeed, R[α] is the
smallest subalgebra of E containing α.

Note that if E contains R as a subring, then the notation R[α] has the
same meaning as that introduced in Example 9.39.

We next state a very simple, but extremely useful, fact:

Theorem 17.1. Let ρ : E → E′ be an R-algebra homomorphism. Then for
any g ∈ R[X] and α ∈ E, we have

ρ(g(α)) = g(ρ(α)).

Proof. Let τ : R → E and τ ′ : R → E′ be the associated maps. Let
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g =
∑

i giXi ∈ R[X]. Then we have

ρ(g(α)) = ρ(
∑

i

τ(gi)αi) =
∑

i

ρ(τ(gi)αi)

=
∑

i

ρ(τ(gi))ρ(αi) =
∑

i

τ ′(gi)ρ(α)i

= g(ρ(α)). 2

As a special case of Theorem 17.1, if E = R[η] for some η ∈ E, then every
element of E can be expressed as g(η) for some g ∈ R[X], and ρ(g(η)) =
g(ρ(η)); hence, the action of ρ is completely determined by its action on η.

Example 17.7. Let E := R[X]/(f) for some monic polynomial f ∈ R[X], so
that E = R[η], where η := [X]f , and let E′ be any R-algebra.

Suppose that ρ : E → E′ is an R-algebra homomorphism, and that η′ :=
ρ(η). The map ρ sends g(η) to g(η′), for g ∈ R[X]. Also, since f(η) = 0E ,
we have 0E′ = ρ(f(η)) = f(η′). Thus, η′ must be a root of f .

Conversely, suppose that η′ ∈ E′ is a root of f . Then the polynomial
evaluation map from R[X] to E′ that sends g ∈ R[X] to g(η′) ∈ E′ is an R-
algebra homomorphism whose kernel contains f , and this gives rise to the
R-algebra homomorphism ρ : E → E′ that sends g(η) to g(η′), for g ∈ R[X].
One sees that complex conjugation is just a special case of this construction
(see Example 9.44). 2

R-algebras as R-modules

If E is an R-algebra, with associated map τ : R → E, we may naturally
view E as an R-module, where we define a scalar multiplication operation
as follows: for a ∈ R and α ∈ E, define

a · α := τ(a)α.

The reader may easily verify that with scalar multiplication so defined, E is
an R-module.

Of course, if E is an algebra over a field F , then it is also a vector space
over F .

Exercise 17.1. Show that any ring E may be viewed as a Z-algebra.

Exercise 17.2. Show that the only R-algebra homomorphisms from C into
itself are the identity map and the complex conjugation map.
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Exercise 17.3. Let E be an R-algebra, viewed as an R-module as discussed
above.

(a) Show that for all a ∈ R and α, β ∈ E, we have a · (αβ) = (a · α)β.

(b) Show that a subring S of E is a subalgebra if and only if it is also
submodule.

(c) Show that if E′ is another R-algebra, then a ring homomorphism
ρ : E → E′ is an R-algebra homomorphism if and only if it is an
R-linear map.

Exercise 17.4. This exercise develops an alternative characterization of
R-algebras. Let R be a ring, and let E be a ring, together with a scalar
multiplication operation, that makes E into an R-module. Further suppose
that for all a ∈ R and α, β ∈ E, we have a(αβ) = (aα)β. Define the
map τ : R → E that sends a ∈ R to a · 1E ∈ E. Show that τ is a ring
homomorphism, so that E is an R-algebra, and also show that τ(a)α = aα

for all a ∈ R and α ∈ E.

17.2 The field of fractions of an integral domain

Let D be any integral domain. Just as we can construct the field of rational
numbers by forming fractions involving integers, we can construct a field
consisting of fractions whose numerators and denominators are elements of
D. This construction is quite straightforward, though a bit tedious.

To begin with, let S be the set of all pairs of the form (a, b), with a, b ∈ D
and b 6= 0D. Intuitively, such a pair (a, b) is a “formal fraction,” with
numerator a and denominator b. We define a binary relation ∼ on S as
follows: for (a1, b1), (a2, b2) ∈ S, we say (a1, b1) ∼ (a2, b2) if and only if
a1b2 = a2b1. Our first task is to show that this is an equivalence relation:

Lemma 17.2. For all (a1, b1), (a2, b2), (a3, b3) ∈ S, we have

(i) (a1, b1) ∼ (a1, b1);

(ii) (a1, b1) ∼ (a2, b2) implies (a2, b2) ∼ (a1, b1);

(iii) (a1, b1) ∼ (a2, b2) and (a2, b2) ∼ (a3, b3) implies (a1, b1) ∼ (a3, b3).

Proof. (i) and (ii) are rather trivial, and we do not comment on these any
further. As for (iii), assume that a1b2 = a2b1 and a2b3 = a3b2. Multiplying
the first equation by b3 we obtain a1b3b2 = a2b3b1 and substituting a3b2 for
a2b3 on the right-hand side of this last equation, we obtain a1b3b2 = a3b2b1.
Now, using the fact that b2 is non-zero and that D is an integral domain,
we may cancel b2 from both sides, obtaining a1b3 = a3b1. 2
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Since ∼ is an equivalence relation, it partitions S into equivalence classes,
and for (a, b) ∈ S, we denote by [a, b] the equivalence class containing (a, b),
and we denote by K the collection of all such equivalence classes. Our
next task is to define addition and multiplication operations on equivalence
classes, mimicking the usual rules of arithmetic with fractions. We want
to define the sum of [a1, b1] and [a2, b2] to be [a1b2 + a2b1, b1b2], and the
product of [a1, b1] and [a2, b2] to be [a1a2, b1b2]. Note that since D is an
integral domain, if b1 and b2 are non-zero, then so is the product b1b2, and
therefore [a1b2 + a2b1, b1b2] and [a1a2, b1b2] are indeed equivalence classes.
However, to ensure that this definition is unambiguous, and does not depend
on the particular choice of representatives of the equivalence classes [a1, b1]
and [a2, b2], we need the following lemma.

Lemma 17.3. For (a1, b1), (a′1, b
′
1), (a2, b2), (a′2, b

′
2) ∈ S with (a1, b1) ∼

(a′1, b
′
1) and (a2, b2) ∼ (a′2, b

′
2), we have

(a1b2 + a2b1, b1b2) ∼ (a′1b
′
2 + a′2b

′
1, b
′
1b
′
2)

and

(a1a2, b1b2) ∼ (a′1a
′
2, b
′
1b
′
2).

Proof. This is a straightforward calculation. Assume that a1b
′
1 = a′1b1 and

a2b
′
2 = a′2b2. Then we have

(a1b2 + a2b1)b′1b
′
2 = a1b2b

′
1b
′
2 + a2b1b

′
1b
′
2 = a′1b2b1b

′
2 + a′2b1b

′
1b2

= (a′1b
′
2 + a′2b

′
1)b1b2

and

a1a2b
′
1b
′
2 = a′1a2b1b

′
2 = a′1a

′
2b1b2. 2

In light of this lemma, we may unambiguously define addition and multi-
plication on K as follows: for [a1, b1], [a2, b2] ∈ K, we define

[a1, b1] + [a2, b2] := [a1b2 + a2b1, b1b2]

and

[a1, b1] · [a2, b2] := [a1a2, b1b2].

The next task is to show that K is a ring—we leave the details of this
(which are quite straightforward) to the reader.

Lemma 17.4. With addition and multiplication as defined above, K is a
ring, with additive identity [0D, 1D] and multiplicative identity [1D, 1D].
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Proof. Exercise. 2

Finally, we observe that K is in fact a field: it is clear that [a, b] is a non-
zero element of K if and only if a 6= 0D, and hence any non-zero element
[a, b] of K has a multiplicative inverse, namely, [b, a].

The field K is called the field of fractions of D. Consider the map
τ : D → K that sends a ∈ D to [a, 1D] ∈ K. It is easy to see that this map
is a ring homomorphism, and one can also easily verify that it is injective.
So, starting from D, we can synthesize “out of thin air” its field of fractions
K, which essentially contains D as a subring, via the canonical embedding
τ : D → K.

Now suppose that we are given a field L that contains D as a subring.
Consider the set K ′ consisting of all elements in L of the form ab−1, where
a, b ∈ D and b 6= 0—note that here, the arithmetic operations are performed
using the rules for arithmetic in L. One may easily verify that K ′ is a
subfield of L that contains D, and it is easy to see that this is the smallest
subfield of L that contains D. The subfield K ′ of L may be referred to as
the field of fractions of D within L. One may easily verify that the map
ρ : K → L that sends [a, b] ∈ K to ab−1 ∈ L is an unambiguously defined
ring homomorphism that maps K injectively onto K ′; in particular, K is
isomorphic as a ring to K ′. It is in this sense that the field of fractions K is
the smallest field containing D as a subring.

Somewhat more generally, suppose that L is a field, and that τ ′ : D → L

is an embedding. One may easily verify that the map ρ : K → L that sends
[a, b] ∈ K to τ ′(a)τ ′(b)−1 ∈ L is an unambiguously defined, injective ring
homomorphism. Moreover, we may view K and L as D-algebras, via the
embeddings τ : D → K and τ ′ : D → L, and the map ρ is seen to be a
D-algebra homomorphism.

From now on, we shall simply write an element [a, b] of K as a fraction,
a/b. In this notation, the above rules for addition, multiplication, and testing
equality in K now look quite familiar:

a1

b1
+
a2

b2
=
a1b2 + a2b1

b1b2
,
a1

b1
· a2

b2
=
a1a2

b1b2
, and

a1

b1
=
a2

b2
iff a1b2 = a2b1.

Observe that for a, b ∈ D, with b ∈ 0D and b | a, so that a = bc for
some c ∈ D, then the fraction a/b ∈ K is equal to the fraction c/1D ∈ K,
and identifying the element c ∈ D with its canonical image c/1D ∈ K, we
may simply write c = a/b. Note that this notation is consistent with that
introduced in part (iii) of Theorem 9.4. A special case of this arises when
b ∈ D∗, in which case c = ab−1.
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Function fields

An important special case of the above construction for the field of fractions
of D is when D = F [X], where F is a field. In this case, the field of fractions is
denoted F (X), and is called the field of rational functions (over F ). This
terminology is a bit unfortunate, since just as with polynomials, although
the elements of F (X) define functions, they are not (in general) in one-to-one
correspondence with these functions.

Since F [X] is a subring of F (X), and since F is a subring of F [X], we see
that F is a subfield of F (X).

More generally, we may apply the above construction to the ring D =
F [X1, . . . , Xn] of multi-variate polynomials over a field F , in which case the
field of fractions is denoted F (X1, . . . , Xn), and is also called the field of
rational functions (over F , in the variables X1, . . . , Xn).

Exercise 17.5. Let F be a field of characteristic zero. Show that F contains
an isomorphic copy of Q.

Exercise 17.6. Show that the field of fractions of Z[i] within C is Q[i]. (See
Example 9.22 and Exercise 9.8.)

17.3 Unique factorization of polynomials

Throughout this section, F denotes a field.
Like the ring Z, the ring F [X] of polynomials is an integral domain, and

because of the division with remainder property for polynomials, F [X] has
many other properties in common with Z. Indeed, essentially all the ideas
and results from Chapter 1 can be carried over almost verbatim from Z to
F [X], and in this section, we shall do just that.

Recall that for a, b ∈ F [X], we write b | a if a = bc for some c ∈ F [X], and
in this case, note that deg(a) = deg(b) + deg(c).

The units of F [X] are precisely the units F ∗ of F , that is, the non-zero
constants. We call two polynomials a, b ∈ F [X] associate if a = ub for
u ∈ F ∗. It is easy to see that a and b are associate if and only if a | b
and b | a—indeed, this follows as a special case of part (ii) of Theorem 9.4.
Clearly, any non-zero polynomial a is associate to a unique monic polynomial
(i.e., with leading coefficient 1), called the monic associate of a; indeed,
the monic associate of a is lc(a)−1 · a.

We call a polynomial p irreducible if it is non-constant and all divisors
of p are associate to 1 or p. Conversely, we call a polynomial n reducible
if it is non-constant and is not irreducible. Equivalently, non-constant n is
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reducible if and only if there exist polynomials a, b ∈ F [X] of degree strictly
less that n such that n = ab.

Clearly, if a and b are associate polynomials, then a is irreducible if and
only if b is irreducible.

The irreducible polynomials play a role similar to that of the prime num-
bers. Just as it is convenient to work with only positive prime numbers, it
is also convenient to restrict attention to monic irreducible polynomials.

Corresponding to Theorem 1.3, every non-zero polynomial can be ex-
pressed as a unit times a product of monic irreducibles in an essentially
unique way:

Theorem 17.5. Every non-zero polynomial n ∈ F [X] can be expressed as

n = u · pe1
1 · · · p

er
r ,

where u ∈ F ∗, the pi are distinct monic irreducible polynomials, and the ei
are positive integers. Moreover, this expression is unique, up to a reordering
of the pi.

To prove this theorem, we may assume that n is monic, since the non-
monic case trivially reduces to the monic case.

The proof of the existence part of Theorem 17.5 is just as for Theorem 1.3.
If n is 1 or a monic irreducible, we are done. Otherwise, there exist a, b ∈
F [X] of degree strictly less than n such that n = ab, and again, we may
assume that a and b are monic. By induction on degree, both a and b can
be expressed as a product of monic irreducible polynomials, and hence, so
can n.

The proof of the uniqueness part of Theorem 17.5 is almost identical
to that of Theorem 1.3. As a special case of Theorem 9.12, we have the
following division with remainder property, analogous to Theorem 1.4:

Theorem 17.6. For a, b ∈ F [X] with b 6= 0, there exist unique q, r ∈ F [X]
such that a = bq + r and deg(r) < deg(b).

Analogous to Theorem 1.5, we have:

Theorem 17.7. For any ideal I ⊆ F [X], there exists a unique polynomial d
such that I = dF [X], where d is either zero or monic.

Proof. We first prove the existence part of the theorem. If I = {0}, then
d = 0 does the job, so let us assume that I 6= {0}. Let d be a monic
polynomial of minimal degree in I. We want to show that I = dF [X].

We first show that I ⊆ dF [X]. To this end, let c be any element in I. It
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suffices to show that d | c. Using Theorem 17.6, we may write c = qd + r,
where deg(r) < deg(d). Then by the closure properties of ideals, one sees
that r = c− qd is also an element of I, and by the minimality of the degree
of d, we must have r = 0. Thus, d | c.

We next show that dF [X] ⊆ I. This follows immediately from the fact
that d ∈ I and the closure properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note
that if dF [X] = d′F [X], we have d | d′ and d′ | d, from which it follows that d
and d′ are associate, and so if d and d′ are both either monic or zero, they
must be equal. 2

For a, b ∈ F [X], we call d ∈ F [X] a common divisor of a and b if d | a
and d | b; moreover, we call such a d a greatest common divisor of a and
b if d is monic or zero, and all other common divisors of a and b divide d.
Analogous to Theorem 1.6, we have:

Theorem 17.8. For any a, b ∈ F [X], there exists a unique greatest common
divisor d of a and b, and moreover, aF [X] + bF [X] = dF [X].

Proof. We apply the previous theorem to the ideal I := aF [X] + bF [X]. Let
d ∈ F [X] with I = dF [X], as in that theorem. Note that a, b, d ∈ I and d is
monic or zero.

It is clear that d is a common divisor of a and b. Moreover, there exist
s, t ∈ F [X] such that as+bt = d. If d′ | a and d′ | b, then clearly d′ | (as+bt),
and hence d′ | d.

Finally, for uniqueness, if d′′ is a greatest common divisor of a and b, then
d | d′′ and d′′ | d, and hence d′′ is associate to d, and the requirement that
d′′ is monic or zero implies that d′′ = d. 2

For a, b ∈ F [X], we denote by gcd(a, b) the greatest common divisor of
a and b. Note that as we have defined it, lc(a) gcd(a, 0) = a. Also note
that when at least one of a or b are non-zero, gcd(a, b) is the unique monic
polynomial of maximal degree that divides both a and b.

An immediate consequence of Theorem 17.8 is that for all a, b ∈ F [X],
there exist s, t ∈ F [X] such that as + bt = gcd(a, b), and that when at
least one of a or b are non-zero, gcd(a, b) is the unique monic polynomial of
minimal degree that can be expressed as as+ bt for some s, t ∈ F [X].

We say that a, b ∈ F [X] are relatively prime if gcd(a, b) = 1, which is
the same as saying that the only common divisors of a and b are units. It is
immediate from Theorem 17.8 that a and b are relatively prime if and only
if aF [X]+bF [X] = F [X], which holds if and only if there exist s, t ∈ F [X] such
that as+ bt = 1.
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Analogous to Theorem 1.7, we have:

Theorem 17.9. For a, b, c ∈ F [X] such that c | ab and gcd(a, c) = 1, we
have c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1, by
Theorem 17.8 we have as + ct = 1 for some s, t ∈ F [X]. Multiplying this
equation by b, we obtain abs+ cbt = b. Since c divides ab by hypothesis, it
follows that c | (abs+ cbt), and hence c | b. 2

Analogous to Theorem 1.8, we have:

Theorem 17.10. Let p ∈ F [X] be irreducible, and let a, b ∈ F [X]. Then
p | ab implies that p | a or p | b.

Proof. Assume that p | ab. The only divisors of p are associate to 1 or p.
Thus, gcd(p, a) is either 1 or the monic associate of p. If p | a, we are done;
otherwise, if p - a, we must have gcd(p, a) = 1, and by the previous theorem,
we conclude that p | b. 2

Now to prove the uniqueness part of Theorem 17.5. Suppose we have

p1 · · · pr = p′1 · · · p′s,

where p1, . . . , pr and p′1, . . . , p
′
s are monic irreducible polynomials (duplicates

are allowed among the pi and among the p′j). If r = 0, we must have s = 0
and we are done. Otherwise, as p1 divides the right-hand side, by inductively
applying Theorem 17.10, one sees that p1 is equal to p′j for some j. We can
cancel these terms and proceed inductively (on r).

That completes the proof of Theorem 17.5.

Analogous to Theorem 1.9, we have:

Theorem 17.11. There are infinitely many monic irreducible polynomials
in F [X].

If F is infinite, then this theorem is true simply because there are infinitely
many monic, linear polynomials; in any case, one can also just prove this
theorem by mimicking the proof of Theorem 1.9 (verify).

For a monic irreducible polynomial p, we may define the function νp, map-
ping non-zero polynomials to non-negative integers, as follows: for polyno-
mial n 6= 0, if n = pem, where p - m, then νp(n) := e. We may then write
the factorization of n into irreducibles as

n = u
∏
p

pνp(n),
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where the product is over all monic irreducible polynomials p, with all but
finitely many of the terms in the product equal to 1.

Just as for integers, we may extend the domain of definition of νp to
include 0, defining νp(0) :=∞. For all polynomials a, b, we have

νp(a · b) = νp(a) + νp(b) for all p. (17.1)

From this, it follows that for all polynomials a, b, we have

b | a if and only if νp(b) ≤ νp(a) for all p, (17.2)

and

νp(gcd(a, b)) = min(νp(a), νp(b)) for all p. (17.3)

For a, b ∈ F [X] a common multiple of a and b is a polynomial m such
that a | m and b | m; moreover, such an m is the least common multiple
of a and b if m is monic or zero, and m divides all common multiples of a
and b. In light of Theorem 17.5, it is clear that the least common multiple
exists and is unique, and we denote the least common multiple of a and
b by lcm(a, b). Note that as we have defined it, lcm(a, 0) = 0, and that
when both a and b are non-zero, lcm(a, b) is the unique monic polynomial
of minimal degree that is divisible by both a and b. Also, for all a, b ∈ F [X],
we have

νp(lcm(a, b)) = max(νp(a), νp(b)) for all p, (17.4)

and

lc(ab) · gcd(a, b) · lcm(a, b) = ab. (17.5)

Just as in §1.3, the notions of greatest common divisor and least common
multiple generalize naturally from two to any number of polynomials. We
also say that polynomials a1, . . . , ak ∈ F [X] are pairwise relatively prime
if gcd(ai, aj) = 1 for all i, j with i 6= j.

Also just as in §1.3, any rational function a/b ∈ F (X) can be expressed
as a fraction a′/b′ in lowest terms, that is, a/b = a′/b′ and gcd(a′, b′) = 1,
and this representation is unique up to multiplication by units.

Many of the exercises in Chapter 1 carry over naturally to polynomials—
the reader is encouraged to look over all of the exercises in that chapter,
determining which have natural polynomial analogs, and work some of these
out.

Exercise 17.7. Show that for f ∈ F [X] of degree 2 or 3, we have f irre-
ducible if and only if f has no roots in F .
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17.4 Polynomial congruences

Throughout this section, F denotes a field.
Specializing the congruence notation introduced in §9.3 for arbitrary rings

to the ring F [X], for polynomials a, b, n ∈ F [X], we write a ≡ b (mod n) when
n | (a−b). Because of the division with remainder property for polynomials,
we have the analog of Theorem 2.1:

Theorem 17.12. Let n ∈ F [X] be a non-zero polynomial. For every a ∈
F [X], there exists a unique b ∈ F [X] such that a ≡ b (mod n) and deg(b) < n,
namely, b := a mod n.

For a non-zero n ∈ F [X], and a ∈ F [X], we say that a′ ∈ F [X] is a multi-
plicative inverse of a modulo n if aa′ ≡ 1 (mod n).

All of the results we proved in §2.2 for solving linear congruences over the
integers carry over almost identically to polynomials. As such, we do not
give proofs of any of the results here. The reader may simply check that the
proofs of the corresponding results translate almost directly.

Theorem 17.13. Let a, n ∈ F [X] with n 6= 0. Then a has a multiplicative
inverse modulo n if and only if a and n are relatively prime.

Theorem 17.14. Let a, n, z, z′ ∈ F [X] with n 6= 0. If a is relatively prime
to n, then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n). More generally,
if d := gcd(a, n), then az ≡ az′ (mod n) if and only if z ≡ z′ (mod n/d).

Theorem 17.15. Let a, b, n ∈ F [X] with n 6= 0. If a is relatively prime
to n, then the congruence az ≡ b (mod n) has a solution z; moreover, any
polynomial z′ is a solution if and only if z ≡ z′ (mod n).

As for integers, this theorem allows us to generalize the “mod” operation
as follows: if n ∈ F [X] is a non-zero polynomial, and s ∈ F (X) is a rational
function of the form b/a, where a, b ∈ F [X], a 6= 0, and gcd(a, n) = 1, then
s mod n denotes the unique polynomial z satisfying

az ≡ b (mod n) and deg(z) < deg(n).

With this notation, we can simply write a−1 mod n to denote the unique
multiplicative inverse of a modulo n with deg(a) < deg(n).

Theorem 17.16. Let a, b, n ∈ F [X] with n 6= 0, and let d := gcd(a, n).
If d | b, then the congruence az ≡ b (mod n) has a solution z, and any
polynomial z′ is also a solution if and only if z ≡ z′ (mod n/d). If d - b,
then the congruence az ≡ b (mod n) has no solution z.
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Theorem 17.17 (Chinese remainder theorem). Let n1, . . . , nk ∈ F [X]
be pairwise relatively prime, non-zero polynomials, and let a1, . . . , ak ∈ F [X]
be arbitrary polynomials. Then there exists a polynomial z ∈ F [X] such that

z ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any other polynomial z′ ∈ F [X] is also a solution of these congru-
ences if and only if z ≡ z′ (mod n), where n :=

∏k
i=1 ni.

Note that the Chinese remainder theorem (with Theorem 17.12) implies
that there exists a unique solution z ∈ F [X] to the given congruences with
deg(z) < deg(n).

The Chinese remainder theorem also has a more algebraic interpreta-
tion. Define quotient rings Ei := F [X]/(ni) for i = 1, . . . , k, which we may
naturally view as F -algebras (see Example 17.4), along with the product
F -algebra E := E1 × · · · ×Ek (see Example 17.2). The map ρ from F [X] to
E that sends z ∈ F [X] to ([z]n1 , . . . , [z]nk

) ∈ E is an F -algebra homomor-
phism. The Chinese remainder theorem says that ρ is surjective, and that
the kernel of ρ is the ideal of F [X] generated by n, giving rise to an F -algebra
isomorphism of F [X]/(n) with E.

Let us recall the formula for the solution z (see proof of Theorem 2.8).
We have

z :=
k∑

i=1

wiai,

where

wi := n′imi, n′i := n/ni, mi := (n′i)
−1 mod ni (i = 1, . . . , k).

Now, let us consider the special case of the Chinese remainder theorem
where ai ∈ F and ni = (X− bi) with bi ∈ F , for i = 1, . . . , k. The condition
that the ni are pairwise relatively prime is equivalent to the condition that
the bi are all distinct. A polynomial z satisfies the system of congruences if
and only if z(bi) = ai for i = 1, . . . , k. Moreover, we have n′i =

∏
j 6=i(X− bj),

and mi = 1/
∏

j 6=i(bi − bj) ∈ F . So we get

z =
k∑

i=1

ai

∏
j 6=i(X− bj)∏
j 6=i(bi − bj)

.

The reader will recognize this as the usual Lagrange interpolation for-
mula. Thus, the Chinese remainder theorem for polynomials includes La-
grange interpolation as a special case.
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Let us consider this situation from the point of view of vector spaces.
Consider the map σ : F [X]<k → F×k that sends z ∈ F [X] of degree less than
k to (z(b1), . . . , z(bk)) ∈ F×k, where as above, b1, . . . , bk are distinct elements
of F . We see that σ is an F -linear map, and by the Chinese remainder
theorem, it is bijective. Thus, σ is an F -vector space isomorphism of F [X]<k

with F×k.
We may encode elements of F [X]<k as row vectors in a natural way, encod-

ing the polynomial z =
∑k−1

i=0 ziX
i as the row vector (z0, . . . , zk−1) ∈ F 1×k.

With this encoding, we have

σ(z) = (z0, . . . , zk−1)V,

where V is the k × k matrix

V :=


1 1 1
b1 b2 bk
...

... · · ·
...

bk−1
1 bk−1

2 · · · bk−1
k

 .

The matrix V (well, actually its transpose) is known as a Vandermonde
matrix. Because σ is an isomorphism, it follows that the matrix V is
invertible.

More generally, consider any fixed elements b1, . . . , b` of F , where ` ≤ k,
and consider the F -linear map σ : F [X]<k → F×` that sends z ∈ F [X]<k to
(z(b1), . . . , z(b`)). If z =

∑k−1
i=0 ziX

i, then

σ(z) = (z0, . . . , zk−1)W,

where W is the k × ` matrix

W :=


1 1 1
b1 b2 b`
...

... · · ·
...

bk−1
1 bk−1

2 · · · bk−1
`

 .

Now, if bi = bj for some i 6= j, then the columns of W are linearly dependent,
and hence the column rank of W is less than `. Since the column rank of
W is equal to its row rank, the dimension of the row space of W is less
than `, and hence, σ is not surjective. Conversely, if the bi are all distinct,
then since the submatrix of W consisting of its first ` rows is an invertible
Vandermonde matrix, we see that the rank of W is equal to `, and hence σ
is surjective.
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17.5 Polynomial quotient algebras

Throughout this section, F denotes a field.
Let f ∈ F [X] be a monic polynomial, and consider the quotient ring

E := F [X]/(f). As discussed in Example 17.4, we may naturally view E

as an F -algebra via the map τ that sends c ∈ R to [c]f ∈ E. Moreover,
if deg(f) > 0, then τ is an embedding of F in F [X]/(f), and otherwise, if
f = 1, then E is the trivial ring, and τ maps everything to zero.

Suppose that ` := deg(f) > 0. Let η := [X]f ∈ E. Then E = F [η], and as
an F -vector space, E has dimension `, with 1, η, . . . , η`−1 being a basis (see
Examples 9.34, 9.43, 14.3, and 14.22). That is, every element of E can be
expressed uniquely as g(η) for g ∈ F [X] of degree less than `.

Now, if f is irreducible, then every polynomial a 6≡ 0 (mod f) is relatively
prime to f , and hence invertible modulo f ; therefore, it follows that E is a
field. Conversely, if f is not irreducible, then E cannot be a field—indeed,
if g is a non-trivial factor of f , then g(η) is a zero divisor.

If F = Zp for a prime number p, and f is irreducible, then we see that E
is a finite field of cardinality p`. In the next chapter, we shall see how one
can perform arithmetic in such fields efficiently, and later, we shall also see
how to efficiently construct irreducible polynomials of any given degree over
a finite field.

Minimal polynomials. Now suppose that E is any F -algebra, and let α
be an element of E. Consider the polynomial evaluation map ρ : F [X]→ E

that sends g ∈ F [X] to g(α). The kernel of ρ is an ideal of F [X], and since
every ideal of F [X] is principal, it follows that there exists a polynomial
φ ∈ F [X] such that ker(ρ) is the ideal of F [X] generated by φ; moreover,
we can make the choice of φ unique by insisting that it is monic or zero.
The polynomial φ is called the minimal polynomial of α (over F ). If
φ = 0, then ρ is injective, and hence the image F [α] of ρ is isomorphic (as
an F -algebra) to F [X]. Otherwise, F [α] is isomorphic (as an F -algebra) to
F [X]/(φ); moreover, since any polynomial that is zero at α is a polynomial
multiple of φ, we see that φ is the unique monic polynomial of smallest
degree that is zero at α.

If E has finite dimension, say n, as an F -vector space, then any element α
of E has a non-zero minimal polynomial. Indeed, the elements 1E , α, . . . , α

n

must be linearly dependent (as must be any n+ 1 vectors in a vector space
of dimension n), and hence there exist c0, . . . , cn ∈ F , not all zero, such that

c01E + c1α+ · · ·+ cnα
n = 0E ,

and therefore, the non-zero polynomial g :=
∑

i ciX
i is zero at α.



17.5 Polynomial quotient algebras 375

Example 17.8. The polynomial X2 +1 is irreducible over R, since if it were
not, it would have a root in R (see Exercise 17.7), which is clearly impossible,
since −1 is not the square of any real number. It follows immediately that
C = R[X]/(X2 + 1) is a field, without having to explicitly calculate a formula
for the inverse of a non-zero complex number. 2

Example 17.9. Consider the polynomial f := X4+X3+1 over Z2. We claim
that f is irreducible. It suffices to show that f has no irreducible factors of
degree 1 or 2.

If f had a factor of degree 1, then it would have a root; however, f(0) =
0 + 0 + 1 = 1 and f(1) = 1 + 1 + 1 = 1. So f has no factors of degree 1.

Does f have a factor of degree 2? The polynomials of degree 2 are X2,
X2 + X, X2 + 1, and X2 + X + 1. The first and second of these polynomials
are divisible by X, and hence not irreducible, while the third has a 1 as a
root, and hence is also not irreducible. The last polynomial, X2 + X+ 1, has
no roots, and hence is the only irreducible polynomial of degree 2 over Z2.
So now we may conclude that if f were not irreducible, it would have to be
equal to

(X2 + X + 1)2 = X4 + 2X3 + 3X2 + 2X + 1 = X4 + X2 + 1,

which it is not.
Thus, E := Z2[X]/(f) is a field with 24 = 16 elements. We may think of

elements E as bit strings of length 4, where the rule for addition is bit-wise
“exclusive-or.” The rule for multiplication is more complicated: to multiply
two given bit strings, we interpret the bits as coefficients of polynomials
(with the left-most bit the coefficient of X3), multiply the polynomials, reduce
the product modulo f , and write down the bit string corresponding to the
reduced product polynomial. For example, to multiply 1001 and 0011, we
compute

(X3 + 1)(X + 1) = X4 + X3 + X + 1,

and

(X4 + X3 + X + 1) mod (X4 + X3 + 1) = X.

Hence, the product of 1001 and 0011 is 0010.
Theorem 9.16 says that E∗ is a cyclic group. Indeed, the element η :=

0010 (i.e., η = [X]f ) is a generator for E∗, as the following table of powers
shows:
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i ηi i ηi

1 0010 8 1110
2 0100 9 0101
3 1000 10 1010
4 1001 11 1101
5 1011 12 0011
6 1111 13 0110
7 0111 14 1100

15 0001

Such a table of powers is sometimes useful for computations in small
finite fields such as this one. Given α, β ∈ E∗, we can compute αβ by
obtaining (by table lookup) i, j such that α = ηi and β = ηj , computing
k := (i+ j) mod 15, and then obtaining αβ = ηk (again by table lookup).
2

Exercise 17.8. In the field E is Example 17.9, what is the minimal poly-
nomial of 1011 over Z2?

Exercise 17.9. Show that if the factorization of f over F [X] into irreducibles
is as f = fe1

1 · · · fer
r , and if α = [h]f ∈ F [X]/(f), then the minimal polynomial

φ of α over F is lcm(φ1, . . . , φr), where each φi is the minimal polynomial
of [h]fei

i
∈ F [X]/(fei

i ) over F .

17.6 General properties of extension fields

We now discuss a few general notions related to extension fields. These are
all quite simple applications of the theory developed so far. Recall that if F
and E are fields, with F being a subring of E, then E is called an extension
field of F . As usual, we shall blur the distinction between a subring and a
canonical embedding; that is, if τ : F → E is an canonical embedding, we
shall simply identify elements of F with their images in E under τ , and in
so doing, we may view E as an extension field of F . Usually, the map τ

will be clear from context; for example, if E = F [X]/(φ) for some irreducible
polynomial φ ∈ F [X], then we shall simply say that E is an extension field of
F , although strictly speaking, F is embedded in E via the map that sends
a ∈ F to [a]φ ∈ E.

Let E be an extension field of a field F . Then E is an F -algebra, and in
particular, an F -vector space. If E is a finite dimensional F -vector space,
then we say that E is a finite extension of F , and dimF (E) is called the
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degree of the extension, and is denoted (E : F ); otherwise, we say that E
is an infinite extension of F .

An element α ∈ E is called algebraic over F if there exists a non-zero
polynomial f ∈ F [X] such that f(α) = 0; otherwise, α is called transcen-
dental over F . If all elements of E are algebraic over F , then we call E an
algebraic extension of F . From the discussion on minimal polynomials
in §17.5, we may immediately state:

Theorem 17.18. If E is a finite extension of F , then E is also an algebraic
extension of F .

Suppose α ∈ E is algebraic over F . Let φ be its minimal polynomial,
so that F [X]/(φ) is isomorphic (as an F -algebra) to F [α]. Since F [α] is a
subring of a field, it must be an integral domain, which implies that φ is
irreducible, which in turn implies that F [α] is a subfield of E. Moreover,
the degree (F [α] : F ) is equal to the degree of φ, and this number is called
the degree of α (over F ). It is clear that if E is finite dimensional, then
the degree of α is at most (E : F ).

Suppose that α ∈ E is transcendental over F . Consider the “rational
function evaluation map” that sends f/g ∈ F (X) to f(α)/g(α) ∈ E. Since
no non-zero polynomial over F vanishes at α, it is easy to see that this map
is well defined, and is in fact an injective F -algebra homomorphism from
F (X) into E. The image is denoted F (α), and this is clearly a subfield of
E containing F and α, and it is plain to see that it is the smallest such
subfield. It is also clear that F (α) has infinite dimension over F , since it
contains an isomorphic copy of the infinite dimensional vector space F [X].

More generally, for any α ∈ E, algebraic or transcendental, we can define
F (α) to be the set consisting of all elements of the form f(α)/g(α) ∈ E,
where f, g ∈ F [X] and g(α) 6= 0. It is clear that F (α) is a field, and indeed,
it is the smallest subfield of E containing F and α. If α is algebraic, then
F (α) = F [α], and is isomorphic (as an F -algebra) to F [X]/(φ), where φ is
the minimal polynomial of α over F ; otherwise, if α is transcendental, then
F (α) is isomorphic (as an F -algebra) to the rational function field F (X).

Example 17.10. If f ∈ F [X] is monic and irreducible, E = F [X]/(f), and
η := [X]f ∈ E, then η is algebraic over F , its minimal polynomial over F is
f , and its degree over F is equal to deg(f). Also, we have E = F [η], and
any element α ∈ E is algebraic of degree at most deg(f). 2

Exercise 17.10. In the field E is Example 17.9, find all the elements of
degree 2 over Z2.
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Exercise 17.11. Show that if E is a finite extension of F , with a basis
α1, . . . , αn over F , and K is a finite extension of E, with a basis β1, . . . , βm

over E, then

αiβj (i = 1, . . . , n; j = 1, . . . ,m)

is a basis for K over F , and hence K is a finite extension of F and

(K : F ) = (K : E)(E : F ).

Exercise 17.12. Show that if E is an algebraic extension of F , and K is
an algebraic extension of E, then K is an algebraic extension of F .

Exercise 17.13. Let E be an extension of F . Show that the set of all
elements in E that are algebraic over F is a subfield of E containing F .

We close this section with a discussion of a splitting field — a finite
extension of the coefficient field in which a given polynomial splits completely
into linear factors. As the next theorem shows, splitting fields always exist.

Theorem 17.19. Let F be a field, and f ∈ F [X] a monic polynomial of
degree `. Then there exists a finite extension K of F in which f factors as

f = (X− α1)(X− α2) · · · (X− α`),

with α1, . . . , α` ∈ K.

Proof. We prove the existence of K by induction on the degree ` of f . If
` = 0, then the theorem is trivially true. Otherwise, let g be an irreducible
factor of f , and set E := F [X]/(g), so that α := [X]g is a root of g, and hence
of f , in E. So over the extension field E, f factors as

f = (X− α)h,

where h ∈ E[X] is a polynomial of degree ` − 1. Applying the induction
hypothesis, there exists a finite extension K of E such that h splits into
linear factors over K. Thus, over K, f splits into linear factors, and by
Exercise 17.11, K is a finite extension of F . 2

17.7 Formal power series and Laurent series

We discuss generalizations of polynomials that allow an infinite number of
non-zero coefficients. Although we are mainly interested in the case where
the coefficients come from a field F , we develop the basic theory for general
rings R.
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17.7.1 Formal power series

The ring R[[X]] of formal power series over R consists of all formal ex-
pressions of the form

a = a0 + a1X + a2X
2 + · · · ,

where a0, a1, a2, . . . ∈ R. Unlike ordinary polynomials, we allow an infinite
number of non-zero coefficients. We may write such a formal power series
as

a =
∞∑
i=0

aiX
i.

The rules for addition and multiplication of formal power series are exactly
the same as for polynomials. Indeed, the formulas (9.1) and (9.2) in §9.2
for addition and multiplication may be applied directly—all of the relevant
sums are finite, and so everything is well defined.

We shall not attempt to interpret a formal power series as a function, and
therefore, “convergence” issues shall simply not arise.

Clearly, R[[X]] contains R[X] as a subring. Let us consider the group of
units of R[[X]].

Theorem 17.20. Let a =
∑∞

i=0 aiXi ∈ R[[X]]. Then a ∈ (R[[X]])∗ if and only
if a0 ∈ R∗.

Proof. If a0 is not a unit, then it is clear that a is not a unit, since the
constant term of a product formal power series is equal to the product of
the constant terms.

Conversely, if a0 is a unit, we show how to define the coefficients of the
inverse b =

∑∞
i=0 biX

i of a. Let ab = c =
∑∞

i=0 ciX
i. We want c = 1, meaning

that c0 = 1 and ci = 0 for all i > 0. Now, c0 = a0b0, so we set b0 := a−1
0 .

Next, we have c1 = a0b1 + a1b0, so we set b1 := −a1b0 · a−1
0 . Next, we have

c2 = a0b2 + a1b1 + a2b0, so we set b2 := −(a1b1 + a2b0) · a−1
0 . Continuing in

this way, we see that if we define bi := −(a1bi−1 + · · ·+ aib0) · a−1
0 for i ≥ 1,

then ab = 1. 2

Example 17.11. In the ring R[[X]], the multiplicative inverse of 1 − X is∑∞
i=0 X

i. 2

Exercise 17.14. For a field F , show that any non-zero ideal of F [[X]] is of
the form (Xm) for some uniquely determined integer m ≥ 0.
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17.7.2 Formal Laurent series

One may generalize formal power series to allow a finite number of negative
powers of X. The ring R((X)) of formal Laurent series over R consists of
all formal expressions of the form

a = amXm + am+1X
m+1 + · · · ,

where m is allowed to be any integer (possibly negative), and am, am+1, . . . ∈
R. Thus, elements of R((X)) may have an infinite number of terms involving
positive powers of X, but only a finite number of terms involving negative
powers of X. We may write such a formal Laurent series as

a =
∞∑

i=m

aiX
i.

The rules for addition and multiplication of formal Laurent series are just
as one would expect: if

a =
∞∑

i=m

aiX
i and b =

∞∑
i=m

biX
i,

then

a+ b :=
∞∑

i=m

(ai + bi)Xi, (17.6)

and

a · b :=
∞∑

i=2m

( i−m∑
k=m

akbi−k

)
Xi. (17.7)

We leave it to the reader to verify that R((X)) is a ring containing R[[X]].

Theorem 17.21. If D is an integral domain, then D((X)) is an integral
domain.

Proof. Let a =
∑∞

i=m aiXi and b =
∑∞

i=n biX
i, where am 6= 0 and bn 6= 0.

Then ab =
∑∞

i=m+n ci, where cm+n = ambn 6= 0. 2

Theorem 17.22. Let a ∈ R((X)), and suppose that a 6= 0 and a =
∑∞

i=m aiXi

with am ∈ R∗. Then a has a multiplicative inverse in R((X)).

Proof. We can write a = Xmb, where b is a formal power series whose constant
term is a unit, and hence there is a formal power series c such that bc = 1.
Thus, X−mc is the multiplicative inverse of a in R((X)). 2

As an immediate corollary, we have:
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Theorem 17.23. If F is a field, then F ((X)) is a field.

Exercise 17.15. Show that for a field F , F ((X)) is the field of fractions of
F [[X]]; that is, there is no proper subfield of F ((X)) that contains F [[X]].

17.7.3 Reversed formal Laurent series

While formal Laurent series are useful in some situations, in many others,
it is more useful and natural to consider reversed formal Laurent series
over R. These are formal expressions of the form

a =
m∑

i=−∞
aiX

i,

where am, am−1, . . . ∈ R. Thus, in a reversed formal Laurent series, we allow
an infinite number of terms involving negative powers of X, but only a finite
number of terms involving positive powers of X.

The rules for addition and multiplication of reversed formal Laurent series
are just as one would expect: if

a =
m∑

i=−∞
aiX

i and b =
m∑

i=−∞
biX

i,

then

a+ b :=
m∑

i=−∞
(ai + bi)Xi, (17.8)

and

a · b :=
2m∑

i=−∞

( m∑
k=i−m

akbi−k

)
Xi. (17.9)

The ring of all reversed formal Laurent series is denoted R((X−1)), and as
the notation suggests, the map that sends X to X−1 (and acts as the identity
on R) is an isomorphism of R((X)) with R((X−1)).

Now, for any a =
∑m

i=−∞ aiXi ∈ R((X−1)) with am 6= 0, let us define the
degree of a, denoted deg(a), to be the value m, and the leading coeffi-
cient of a, denoted lc(a), to be the value am. As for ordinary polynomials,
we define the degree of 0 to be −∞, and the leading coefficient of 0 to be 0.
Note that if a happens to be a polynomial, then these definitions of degree
and leading coefficient agree with that for ordinary polynomials.
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Theorem 17.24. For a, b ∈ R((X−1)), we have deg(ab) ≤ deg(a) + deg(b),
where equality holds unless both lc(a) and lc(b) are zero divisors. Fur-
thermore, if b 6= 0 and lc(b) is a unit, then b is a unit, and we have
deg(ab−1) = deg(a)− deg(b).

Proof. Exercise. 2

It is also natural to define a floor function for reversed formal Laurent
series: for a ∈ R((X−1)) with a =

∑m
i=−∞ aiXi, we define

bac :=
m∑

i=0

aiX
i ∈ R[X];

that is, we compute the floor function by simply throwing away all terms
involving negative powers of X.

Now, let a, b ∈ R[X] with b 6= 0 and lc(b) a unit, and using the usual
division with remainder property for polynomials, write a = bq + r, where
q, r ∈ R[X] with deg(r) < deg(b). Let b−1 denote the multiplicative inverse of
b in R((X−1)). It is not too hard to see that bab−1c = q; indeed, multiplying
the equation a = bq+r by b−1, we obtain ab−1 = q+rb−1, and deg(rb−1) < 0,
from which it follows that bab−1c = q.

Let F be a field. Since F ((X−1)) is isomorphic to F ((X)), and the latter
is a field, it follows that F ((X−1)) is a field. Now, F ((X−1)) contains F [X]
as a subring, and hence contains (an isomorphic copy) of F (X). Just as
F (X) corresponds to the field of rational numbers, F ((X−1)) corresponds to
the field real numbers. Indeed, we can think of real numbers as decimal
numbers with a finite number of digits to the left of the decimal point
and an infinite number to the right, and reversed formal Laurent series
have a similar “syntactic” structure. In many ways, this syntactic similarity
between the real numbers and reversed formal Laurent series is more than
just superficial.

Exercise 17.16. Write down the rule for determining the multiplicative
inverse of an element of R((X−1)) whose leading coefficient is a unit in R.

Exercise 17.17. Let F be a field of characteristic other than 2. Show that
a non-zero z ∈ F ((X−1)) has a square-root in z ∈ F ((X−1)) if and only if
deg(z) is even and lc(z) has a square-root in F .

Exercise 17.18. Let R be a ring, and let α ∈ R. Show that the multiplica-
tive inverse of X− α in R((X−1)) is

∑∞
j=1 α

j−1X−j .
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Exercise 17.19. Let R be an arbitrary ring, let α1, . . . , α` ∈ R, and let

f := (X− α1)(X− α2) · · · (X− α`) ∈ R[X].

For j ≥ 0, define the “power sum”

sj :=
∑̀
i=1

αj
i .

Show that in the ring R((X−1)), we have

D(f)
f

=
∑̀
i=1

1
(X− αi)

=
∞∑

j=1

sj−1X
−j ,

where D(f) is the formal derivative of f .

Exercise 17.20. Continuing with the previous exercise, derive Newton’s
identities, which state that if f = X` +f1X`−1 + · · ·+f`, with f1, . . . , f` ∈ R,
then

s1 + f1 = 0

s2 + f1s1 + 2f2 = 0

s3 + f1s2 + f2s1 + 3f3 = 0
...

s` + f1s`−1 + · · ·+ f`−1s1 + `f` = 0

sj+` + f1sj+`−1 + · · ·+ f`−1sj+1 + f`sj = 0 (j ≥ 1).

17.8 Unique factorization domains (∗)
As we have seen, both the integers and the ring F [X] of polynomials over
a field enjoy a unique factorization property. These are special cases of a
more general phenomenon, which we explore here.

Throughout this section, D denotes an integral domain.
We call a, b ∈ D associate if a = ub for some u ∈ D∗. Equivalently, a

and b are associate if and only if a | b and b | a. A non-zero element p ∈ D
is called irreducible if it is not a unit, and all divisors of p are associate to
1 or p. Equivalently, a non-zero, non-unit p ∈ D is irreducible if and only if
it cannot be expressed as p = ab where neither a nor b are units.
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Definition 17.25. We call D a unique factorization domain (UFD)

if

(i) every non-zero element of D that is not a unit can be written as a
product of irreducibles in D, and

(ii) such a factorization into irreducibles is unique up to associates and
the order in which the factors appear.

Another way to state part (ii) of the above definition is that if p1 · · · pr and
p′1 · · · p′s are two factorizations of some element as a product of irreducibles,
then r = s, and there exists a permutation π on the indices {1, . . . , r} such
that pi and p′π(i) are associate.

As we have seen, both Z and F [X] are UFDs. In both of those cases,
we chose to single out a distinguished irreducible element among all those
associate to any given irreducible: for Z, we always chose p to be positive,
and for F [X], we chose p to be monic. For any specific unique factorization
domain D, there may be such a natural choice, but in the general case, there
will not be (see Exercise 17.21 below).

Example 17.12. Having already seen two examples of UFDs, it is perhaps
a good idea to look at an example of an integral domain that is not a UFD.
Consider the subring Z[

√
−3] of the complex numbers, which consists of all

complex numbers of the form a+ b
√
−3, where a, b ∈ Z. As this is a subring

of the field C, it is an integral domain (one may also view Z[
√
−3] as the

quotient ring Z[X]/(X2 + 3)).
Let us first determine the units in Z[

√
−3]. For a, b ∈ Z, we have N(a +

b
√
−3) = a2 + 3b2, where N is the usual norm map on C (see Example 9.5).

If α ∈ Z[
√
−3] is a unit, then there exists α′ ∈ Z[

√
−3] such that αα′ = 1.

Taking norms, we obtain

1 = N(1) = N(αα′) = N(α)N(α′).

Since the norm of an element of Z[
√
−3] is a non-negative integer, this

implies that N(α) = 1. If α = a+b
√
−3, with a, b ∈ Z, then N(α) = a2+3b2,

and it is clear that N(α) = 1 if and only if α = ±1. We conclude that the
only units in Z[

√
−3] are ±1.

Now consider the following two factorizations of 4 in Z[
√
−3]:

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3). (17.10)

We claim that 2 is irreducible. For suppose, say, that 2 = αα′, for
α, α′ ∈ Z[

√
−3], with neither a unit. Taking norms, we have 4 = N(2) =

N(α)N(α′), and therefore, N(α) = N(α′) = 2—but this is impossible, since
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there are no integers a and b such that a2 +3b2 = 2. By the same reasoning,
since N(1+

√
−3) = N(1−

√
−3) = 4, we see that 1+

√
−3 and 1−

√
−3 are

both irreducible. Further, it is clear that 2 is not associate to either 1+
√
−3

or 1−
√
−3, and so the two factorizations of 4 in (17.10) are fundamentally

different. 2

For a, b ∈ D, we call d ∈ D a common divisor of a and b if d | a and
d | b; moreover, we call such a d a greatest common divisor of a and
b if all other common divisors of a and b divide d. We say that a and b

are relatively prime if the only common divisors of a and b are units.
It is immediate from the definition of a greatest common divisor that it is
unique, up to multiplication by units, if it exists at all. Unlike in the case of
Z and F [X], in the general setting, greatest common divisors need not exist;
moreover, even when they do, we shall not attempt to “normalize” greatest
common divisors, and we shall speak only of “a” greatest common divisor,
rather than “the” greatest common divisor.

Just as for integers and polynomials, we can generalize the notion of a
greatest common divisor in an arbitrary integral domain D from two to any
number of elements of D, and we can also define a least common multiple
of any number of elements as well.

Although these greatest common divisors and least common multiples
need not exist in an arbitrary integral domain D, if D is a UFD, they will
always exist. The existence question easily reduces to the question of the
existence of a greatest common divisor and least common multiple of a and
b, where a and b are non-zero elements of D. So assuming that D is a UFD,
we may write

a = u

r∏
i=1

pei
i and b = v

r∏
i=1

pfi
i ,

where u and v are units, p1, . . . , pr are non-associate irreducibles, and the
ei and fi are non-negative integers, and it is easily seen that

r∏
i=1

pmin(ei,fi)

is a greatest common divisor of a and b, while
r∏

i=1

pmax(ei,fi)

is a least common multiple of a and b.
It is also evident that in a UFD D, if c | ab and c and a are relatively
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prime, then c | b. In particular, if p is irreducible and p | ab, then p | a or
p | b. From this, we see that if p is irreducible, then the quotient ring D/pD
is an integral domain, and so the ideal pD is a prime ideal (see discussion
above Exercise 9.28).

In a general integral domain D, we say that an element p ∈ D is prime
if for all a, b ∈ D, p | ab implies p | a or p | b (which is equivalent to saying
that the ideal pD is prime). Thus, if D is a UFD, then all irreducibles are
primes; however, in a general integral domain, this may not be the case.
Here are a couple of simple but useful facts whose proofs we leave to the
reader.

Theorem 17.26. Any prime element in D is irreducible.

Proof. Exercise. 2

Theorem 17.27. Suppose D satisfies part (i) of Definition 17.25. Also,
suppose that all irreducibles in D are prime. Then D is a UFD.

Proof. Exercise. 2

Exercise 17.21. (a) Show that the “is associate to” relation is an equiv-
alence relation.

(b) Consider an equivalence class C induced by the “is associate to”
relation. Show that if C contains an irreducible element, then all
elements of C are irreducible.

(c) Suppose that for every equivalence class C that contains irreducibles,
we choose one element of C, and call it a distinguished irreducible.
Show that D is a UFD if and only if every non-zero element of D can
be expressed as u · pe1

1 · · · per
r , where u is a unit, p1, . . . , pr are distin-

guished irreducibles, and this expression is unique up to a reordering
of the pi.

Exercise 17.22. Show that the ring Z[
√
−5] is not a UFD.

Exercise 17.23. Let D be a UFD and F its field of fractions. Show that
(a) every element x ∈ F can be expressed as x = a/b, where a, b ∈ D are

relatively prime, and
(b) that if x = a/b for a, b ∈ D relatively prime, then for any other

a′, b′ ∈ D with x = a′/b′, we have a′ = ca and b′ = cb for some c ∈ D.

Exercise 17.24. Let D be a UFD and let p ∈ D be irreducible. Show that
there is no prime ideal Q of D with {0D} ( Q ( pD.
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17.8.1 Unique factorization in Euclidean and principal ideal

domains

Our proofs of the unique factorization property in both Z and F [X] hinged
on the division with remainder property for these rings. This notion can be
generalized, as follows.

Definition 17.28. D is said to be a Euclidean domain if there is a “size
function” S mapping the non-zero elements of D to the set of non-negative
integers, such that for a, b ∈ D with b 6= 0, there exist q, r ∈ D, with the
property that a = bq + r and either r = 0 or S(r) < S(b).

Example 17.13. Both Z and F [X] are Euclidean domains. In Z, we can
take the ordinary absolute value function | · | as a size function, and for F [X],
the function deg(·) will do. 2

Example 17.14. Recall again the ring

Z[i] = {a+ bi : a, b ∈ Z}

of Gaussian integers from Example 9.22. Let us show that this is a Euclidean
domain, using the usual norm map N on complex numbers (see Example 9.5)
for the size function. Let α, β ∈ Z[i], with β 6= 0. We want to show the
existence of ξ, ρ ∈ Z[i] such that α = βξ + ρ, where N(ρ) < N(β). Suppose
that in the field C, we compute αβ−1 = r + si, where r, s ∈ Q. Let m,n be
integers such that |m− r| ≤ 1/2 and |n− s| ≤ 1/2—such integers m and n

always exist, but may not be uniquely determined. Set ξ := m + ni ∈ Z[i]
and ρ := α− βξ. Then we have

αβ−1 = ξ + δ,

where δ ∈ C with N(δ) ≤ 1/4 + 1/4 = 1/2, and

ρ = α− βξ = α− β(αβ−1 − δ) = δβ,

and hence

N(ρ) = N(δβ) = N(δ)N(β) ≤ 1
2
N(β). 2

Theorem 17.29. If D is a Euclidean domain and I is an ideal of D, then
there exists d ∈ D such that I = dD.

Proof. If I = {0}, then d = 0 does the job, so let us assume that I 6= {0}.
Let d be an non-zero element of I such that S(d) is minimal, where S is a
size function that makes D into a Euclidean domain. We claim that I = dD.

It will suffice to show that for all c ∈ I, we have d | c. Now, we know
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that there exists q, r ∈ D such that c = qd + r, where either r = 0 or
S(r) < S(d). If r = 0, we are done; otherwise, r is a non-zero element of I
with S(r) < S(d), contradicting the minimality of S(d). 2

Recall that an ideal of the form I = dD is called a principal ideal. If
all ideals of D are principal, then D is called a principal ideal domain
(PID). Theorem 17.29 says that any Euclidean domain is a PID.

PIDs enjoy many nice properties, including:

Theorem 17.30. If D is a PID, then D is a UFD.

For the rings Z and F [X], the proof of part (i) of Definition 17.25 was
a quite straightforward induction argument (as it also would be for any
Euclidean domain). For a general PID, however, this requires a different
sort of argument. We begin with the following fact:

Theorem 17.31. If D is a PID, and I1 ⊆ I2 ⊆ · · · is an ascending chain
of ideals of D, then there exists an integer k such that Ik = Ik+1 = · · · .

Proof. Let I :=
⋃∞

i=1 Ii. It is easy to see that I is an ideal. Thus, I = dD for
some d ∈ D. But d ∈

⋃∞
i=1 Ii implies that d ∈ Ik for some k, which shows

that I = dD ⊆ Ik. It follows that I = Ik = Ik+1 = · · · . 2

We can now prove the existence part of Theorem 17.30:

Theorem 17.32. If D is a PID, then every non-zero, non-unit element of
D can be expressed as a product of irreducibles in D.

Proof. Let n ∈ D, n 6= 0, and n not a unit. If n is irreducible, we are done.
Otherwise, we can write n = ab, where neither a nor b are units. As ideals,
we have nD ( aD and nD ( bD. If we continue this process recursively,
building up a “factorization tree” where n is at the root, a and b are the
children of n, and so on, then the recursion must stop, since any infinite
path in the tree would give rise to a chain of ideals

nD = I1 ( I2 ( · · · ,

contradicting Theorem 17.31. 2

The proof of the uniqueness part of Theorem 17.30 is essentially the same
as for proofs we gave for Z and F [X].

Analogous to Theorems 1.6 and 17.8, we have:

Theorem 17.33. Let D be a PID. For any a, b ∈ D, there exists a greatest
common divisor d of a and b, and moreover, aD + bD = dD.
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Proof. Exercise. 2

As an immediate consequence of the previous theorem, we see that in a
PID D, for all a, b ∈ D with greatest common divisor d, there exist s, t ∈ D
such that as+ bt = d; moreover, a, b ∈ D are relatively prime if and only if
there exist s, t ∈ D such that as+ bt = 1.

Analogous to Theorems 1.7 and 17.9, we have:

Theorem 17.34. Let D be a PID. For a, b, c ∈ D such that c | ab and a

and c are relatively prime, we have c | b.

Proof. Exercise. 2

Analogous to Theorems 1.8 and 17.10, we have:

Theorem 17.35. Let D be a PID. Let p ∈ D be irreducible, and let a, b ∈ D.
Then p | ab implies that p | a or p | b. That is, all irreducibles in D are
prime.

Proof. Exercise. 2

Theorem 17.30 now follows immediately from Theorems 17.32, 17.35, and
17.27.

Exercise 17.25. Show that Z[
√
−2] is a Euclidean domain.

Exercise 17.26. Consider the polynomial

X3 − 1 = (X− 1)(X2 + X + 1).

Over C, the roots of X3 − 1 are 1, (−1±
√
−3)/2. Let ω := (−1 +

√
−3)/2,

and note that ω2 = −1− ω = (−1−
√
−3)/2, and ω3 = 1.

(a) Show that the ring Z[ω] consists of all elements of the form a + bω,
where a, b ∈ Z, and is an integral domain. This ring is called the ring
of Eisenstein integers.

(b) Show that the only units in Z[ω] are ±1, ±ω, and ±ω2.

(c) Show that Z[ω] is a Euclidean domain.

Exercise 17.27. Show that in a PID, all non-zero prime ideals are maximal.

Recall that for a complex number α = a+ bi, with a, b ∈ R, the norm of
α was defined as N(α) = αᾱ = a2 + b2 (see Example 9.5). There are other
measures of the “size” of a complex number that are useful. The absolute
value of α is defined as |α| :=

√
N(α) =

√
a2 + b2. The max norm of α is

defined as M(α) := max{|a|, |b|}.
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Exercise 17.28. Let α, β ∈ C. Prove the following statements.
(a) |αβ| = |α||β|.
(b) |α+ β| ≤ |α|+ |β|.
(c) N(α+ β) ≤ 2(N(α) +N(β)).
(d) M(α) ≤ |α| ≤

√
2M(α).

The following exercises develop algorithms for computing with Gaussian
integers. We shall assume that for computational purposes, a Gaussian
integer α = a+ bi, with a, b ∈ Z, is represented as the pair of integers (a, b).

Exercise 17.29. Let α, β ∈ Z[i].
(a) Show how to compute M(α) in time O(len(M(α))) and N(α) in time

O(len(M(α))2).
(b) Show how to compute α+ β in time O(len(M(α)) + len(M(β))).
(c) Show how to compute α · β in time O(len(M(α)) · len(M(β))).
(d) Assuming β 6= 0, show how to compute ξ, ρ ∈ Z[i] such that α = βξ+

ρ, N(ρ) ≤ 1
2N(β), and N(ξ) ≤ 4N(α)/N(β). Your algorithm should

run in time O(len(M(α))·len(M(β))). Hint: see Example 17.14; also,
to achieve the stated running time bound, your algorithm should first
test if M(β) ≥ 2M(α).

Exercise 17.30. Using the division with remainder algorithm from part
(d) of the previous exercise, adapt the Euclidean algorithm for (ordinary)
integers to work with Gaussian integers. On inputs α, β ∈ Z[i], your algo-
rithm should compute a greatest common divisor δ ∈ Z[i] of α and β in time
O(`3), where ` := max{len(M(α)), len(M(β))}.

Exercise 17.31. Extend the algorithm of the previous exercise, so that it
computes σ, τ ∈ Z[i] such that ασ + βτ = δ. Your algorithm should run in
time O(`3), and it should also be the case that len(M(σ)) and len(M(τ))
are O(`).

The algorithms in the previous two exercises for computing greatest com-
mon divisors in Z[i] run in time cubic in the length of their input, whereas
the corresponding algorithms for Z run in time quadratic in the length of
their input. This is essentially because the running time of the algorithm
for division with remainder discussed in Exercise 17.29 is insensitive to the
size of the quotient.

To get a quadratic-time algorithm for computing greatest common divisors
in Z[i], in the following exercises we shall develop an analog of the binary
gcd algorithm for Z.
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Exercise 17.32. Let π := 1 + i ∈ Z[i].

(a) Show that 2 = ππ̄ = −iπ2, that N(π) = 2, and that π is irreducible
in Z[i].

(b) Let α ∈ Z[i], with α = a+ bi for a, b ∈ Z. Show that π | α if and only
if a− b is even, in which case

α

π
=
a+ b

2
+
b− a

2
i.

(c) Show that for any α ∈ Z[i], we have α ≡ 0 (mod π) or α ≡ 1 (mod π).

(d) Show that the quotient ring Z[i]/πZ[i] is isomorphic to the ring Z2.

(e) Show that for any α ∈ Z[i] with α ≡ 1 (mod π), there exists a unique
ε ∈ {±1,±i} such that α ≡ ε (mod 2π).

(f) Show that for any α, β ∈ Z[i] with α ≡ β ≡ 1 (mod π), there exists a
unique ε ∈ {±1,±i} such that α ≡ εβ (mod 2π).

Exercise 17.33. We now present a “(1+i)-ary gcd algorithm” for Gaussian
integers. Let π := 1 + i ∈ Z[i]. The algorithm takes non-zero α, β ∈ Z[i] as
input, and runs as follows:

ρ← α, ρ′ ← β, e← 0
while π | ρ and π | ρ′ do ρ← ρ/π, ρ′ ← ρ′/π, e← e+ 1
repeat

while π | ρ do ρ← ρ/π

while π | ρ′ do ρ′ ← ρ′/π

if M(ρ′) < M(ρ) then (ρ, ρ′)← (ρ′, ρ)
determine ε ∈ {±1,±i} such that ρ′ ≡ ερ (mod 2π)

(∗) ρ′ ← ρ′ − ερ
until ρ′ = 0
δ ← πe · ρ
output δ

Show that this algorithm correctly computes a greatest common divisor
of α and β, and can be implemented so as to run in time O(`2), where
` := max(len(M(α)), len(M(β))). Hint: to analyze the running time, for
i = 1, 2, . . . , let vi (respectively, v′i) denote the value of |ρρ′| just before
(respectively, after) the execution of the line marked (∗) in loop iteration i,
and show that

v′i ≤ (1 +
√

2)vi and vi+1 ≤ v′i/2
√

2.

Exercise 17.34. Extend the algorithm of the previous exercise, so that it
computes σ, τ ∈ Z[i] such that ασ + βτ = δ. Your algorithm should run in
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time O(`2), and it should also be the case that len(M(σ)) and len(M(τ))
are O(`). Hint: adapt the algorithm in Exercise 4.2.

Exercise 17.35. In Exercise 17.32, we saw that 2 factors as −iπ2 in Z[i],
where π := 1 + i is irreducible. This exercise examines the factorization in
Z[i] of prime numbers p > 2.

(a) Suppose −1 is not congruent to the square of any integer modulo p.
Show that p is irreducible in Z[i].

(b) Suppose that c2 ≡ −1 (mod p) for some c ∈ Z. Let γ := c+ i ∈ Z[i]
and let δ be a greatest common divisor in Z[i] of γ and p. Show that
p = δδ̄, and that δ and δ̄ are non-associate, irreducible elements of
Z[i].

17.8.2 Unique factorization in D[X]

In this section, we prove the following:

Theorem 17.36. If D is a UFD, then so is D[X].

This theorem implies, for example, that Z[X] is a UFD. Applying the
theorem inductively, one also sees that for any field F , the ring F [X1, . . . , Xn]
of multi-variate polynomials over F is also a UFD.

We begin with some simple observations. First, recall that for an integral
domain D, D[X] is an integral domain, and the units in D[X] are precisely the
units in D. Second, it is easy to see that an element of D is irreducible in D if
and only if it is irreducible in D[X]. Third, for c ∈ D and f =

∑
i aiXi ∈ D[X],

we have c | f if and only if c | ai for all i.
We call a non-zero polynomial f ∈ D[X] primitive if the only elements

in D that divide f are units. If D is a UFD, then given any non-zero
polynomial f ∈ D[X], we can write it as f = cf ′, where c ∈ D and f ′ ∈ D[X]
is a primitive polynomial: just take c to be a greatest common divisor of all
the coefficients of f .

It is easy to prove the existence part of Theorem 17.36:

Theorem 17.37. Let D be a UFD. Any non-zero, non-unit element of D[X]
can be expressed as a product of irreducibles in D[X].

Proof. Let f be a non-zero, non-unit polynomial in D[X]. If f is a constant,
then because D is a UFD, it factors into irreducibles in D. So assume f
is not constant. If f is not primitive, we can write f = cf ′, where c is a
non-zero, non-unit in D, and f ′ is a primitive, non-constant polynomial in
D[X]. Again, as D is a UFD, c factors into irreducibles in D.



17.8 Unique factorization domains (∗) 393

From the above discussion, it suffices to prove the theorem for non-
constant, primitive polynomials f ∈ D[X]. If f is itself irreducible, we are
done. Otherwise, then we can write f = gh, where g, h ∈ D[X] and nei-
ther g nor h are units. Further, by the assumption that f is a primitive,
non-constant polynomial, both g and h must also be primitive, non-constant
polynomials; in particular, both g and h have degree strictly less than deg(f),
and the theorem follows by induction on degree. 2

The uniqueness part of Theorem 17.36 is (as usual) more difficult. We
begin with the following fact:

Theorem 17.38. Let D be a UFD, let p be an irreducible in D, and let
f, g ∈ D[X]. Then p | fg implies p | f or p | g.

Proof. Consider the quotient ring D/pD, which is an integral domain (be-
cause D is a UFD), and the corresponding ring of polynomials (D/pD)[X],
which is also an integral domain. Consider the natural map from D[X] to
(D/pD)[X] that sends a ∈ D[X] to the polynomial ā ∈ (D/pD)[X] obtained
by mapping each coefficient of a to its residue class modulo p. If p | fg, then
we have

0 = fg = f̄ ḡ,

and since (D/pD)[X] is an integral domain, it follows that f̄ = 0 or ḡ = 0,
which means that p | f or p | g. 2

Theorem 17.39. Let D be a UFD. The product of two primitive polynomi-
als in D[X] is also primitive.

Proof. Let f, g ∈ D[X] be primitive polynomials, and let h := fg. If h is
not primitive, then m | h for some non-zero, non-unit m ∈ D, and as D is a
UFD, there is some irreducible element p ∈ D that divides m, and therefore,
divides h as well. By Theorem 17.38, it follows that p | f or p | g, which
implies that either f is not primitive or g is not primitive. 2

Suppose that D is a UFD and that F is its field of fractions. Any non-zero
polynomial f ∈ F [X] can always be written as f = (c/d)f ′, where c, d ∈ D,
with d 6= 0, and f ′ ∈ D[X] is primitive. To see this, clear the denominators
of the coefficients of f , writing df = f ′′, where 0 6= d ∈ D and f ′′ ∈ D[X].
Then take c to be a greatest common divisor of the coefficients of f ′′, so
that f ′′ = cf ′, where f ′ ∈ D[X] is primitive. Then we have f = (c/d)f ′, as
required. Of course, we may assume that c and d are relatively prime—if
not, we may divide c and d by a greatest common divisor.

As a consequence of the previous theorem, we have:
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Theorem 17.40. Let D be a UFD and let F be its field of fractions. Let
f, g ∈ D[X] and h ∈ F [X] be non-zero polynomials such that f = gh and g is
primitive. Then h ∈ D[X].

Proof. Write h = (c/d)h′, where c, d ∈ D and h′ ∈ D[X] is primitive. Let us
assume that c and d are relatively prime. Then we have

d · f = c · gh′. (17.11)

We claim that d ∈ D∗. To see this, note that (17.11) implies that d |
(c · gh′), and the assumption that c and d are relatively prime implies that
d | gh′. But by Theorem 17.39, gh′ is primitive, from which it follows that
d is a unit. That proves the claim.

It follows that c/d ∈ D, and hence h = (c/d)h′ ∈ D[X]. 2

Theorem 17.41. Let D be a UFD and F its field of fractions. If f ∈ D[X]
with deg(f) > 0 is irreducible, then f is also irreducible in F [X].

Proof. Suppose that f is not irreducible in F [X], so that f = gh for non-
constant polynomials g, h ∈ F [X], both of degree strictly less than that of f .
We may write g = (c/d)g′, where c, d ∈ D and g′ ∈ D[X] is primitive. Set
h′ := (c/d)h, so that f = gh = g′h′. By Theorem 17.40, we have h′ ∈ D[X],
and this shows that f is not irreducible in D[X]. 2

Theorem 17.42. Let D be a UFD. Let f ∈ D[X] with deg(f) > 0 be
irreducible, and let g, h ∈ D[X]. If f divides gh in D[X], then f divides
either g or h in D[X].

Proof. Suppose that f ∈ D[X] with deg(f) > 0 is irreducible. This implies
that f is a primitive polynomial. By Theorem 17.41, f is irreducible in F [X],
where F is the field of fractions of D. Suppose f divides gh in D[X]. Then
because F [X] is a UFD, f divides either g or h in F [X]. But Theorem 17.40
implies that f divides either g or h in D[X]. 2

Theorem 17.36 now follows immediately from Theorems 17.37, 17.38, and
17.42, together with Theorem 17.27.

In the proof of Theorem 17.36, there is a clear connection between factor-
ization in D[X] and F [X], where F is the field of fractions of D. We should
perhaps make this connection more explicit. Suppose f ∈ D[X] factors into
irreducibles in D[X] as

f = ca1
1 · · · c

ar
r h

b1
1 · · ·h

bs
s .

where the ci are non-associate, irreducible constants, and the hi are non-
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associate, irreducible, non-constant polynomials (and in particular, primi-
tive). By Theorem 17.41, the hi are irreducible in F [X]. Moreover, by The-
orem 17.40, the hi are non-associate in F [X]. Therefore, in F [X], f factors
as

f = chb1
1 · · ·h

bs
s ,

where c := ca1
1 · · · car

r is a unit in F , and the hi are non-associate irreducible
polynomials in F [X].

Example 17.15. It is important to keep in mind the distinction between
factorization in D[X] and F [X]. Consider the polynomial 2X2 − 2 ∈ Z[X].
Over Z[X], this polynomial factors as 2(X − 1)(X + 1), where each of these
three factors are irreducible in Z[X]. Over Q[X], this polynomial has two
irreducible factors, namely, X− 1 and X + 1. 2

The following theorem provides a useful criterion for establishing that a
polynomial is irreducible.

Theorem 17.43 (Eisenstein’s criterion). Let D be a UFD and F its
field of fractions. Let f = fnXn + fn−1Xn−1 + · · ·+ f0 ∈ D[X]. If there exists
an irreducible p ∈ D such that

p - fn, p | fn−1, · · · , p | f0, p
2 - f0,

then f is irreducible over F .

Proof. Let f be as above, and suppose it were not irreducible in F [X]. Then
by Theorem 17.41, we could write f = gh, where g, h ∈ D[X], both of degree
strictly less than that of f . Let us write

g = grX
r + · · ·+ g0 and h = hsX

s + · · ·+ h0,

where gr 6= 0 and hs 6= 0, so that 0 < r < n and 0 < s < n. Now,
since fn = grhs, and p - fn, it follows that p - gr and p - hs. Further, since
f0 = g0h0, and p | f0 but p2 - f0, it follows that p divides one of g0 or h0, but
not both—for concreteness, let us assume that p | g0 but p - h0. Also, let t
be the smallest positive integer such that p - gt —note that 0 < t ≤ r < n.

Now consider the natural map that sends c ∈ D to c̄ ∈ D/pD, which we
can extend coefficient-wise to the map that sends a ∈ D[X] to ā ∈ (D/pD)[X].
Because D is a UFD and p is irreducible, both D/pD and (D/pD)[X] are
integral domains. Since f = gh, we have

f̄nX
n = f̄ = ḡh̄ = (ḡrX

r + · · ·+ ḡtX
t)(h̄sX

s + · · ·+ h̄0). (17.12)
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But notice that when we multiply out the two polynomials on the right-
hand side of (17.12), the coefficient of Xt is ḡth̄0 6= 0, and as t < n, this
clearly contradicts the fact that the coefficient of Xt in the polynomial on
the left-hand side of (17.12) is zero. 2

As an application of Eisenstein’s criterion, we have:

Theorem 17.44. For any prime number q, the qth cyclotomic polynomial

Φq :=
Xq − 1
X− 1

= Xq−1 + Xq−2 + · · ·+ 1

is irreducible over Q.

Proof. Let

f := Φq

[
X + 1

]
=

(X + 1)q − 1
(X + 1)− 1

.

It is easy to see that

f =
q−1∑
i=0

aiXi, where ai =
(

q

i+ 1

)
(i = 0, . . . , q − 1).

Thus, aq−1 = 1, a0 = q, and for 0 < i < q − 1, we have q | ai (see
Exercise 1.12). Theorem 17.43 therefore applies, and we conclude that f is
irreducible over Q. It follows that Φq is irreducible over Q, since if Φq = gh

were a non-trivial factorization of Φq, then f = Φq

[
X + 1

]
= g

[
X + 1

]
·

h
[
X + 1

]
would be a non-trivial factorization of f . 2

Exercise 17.36. Show that neither Z[X] nor F [X, Y] (where F is a field) are
PIDs (even though they are UFDs).

Exercise 17.37. Let f ∈ Z[X] be a monic polynomial. Show that if f has a
root α ∈ Q, then α ∈ Z, and α divides the constant term of f .

Exercise 17.38. Let a be a non-zero, square-free integer, with a 6∈ {±1}.
For integer n ≥ 1, show that the polynomial Xn − a is irreducible in Q[X].

Exercise 17.39. Show that the polynomial X4 + 1 is irreducible in Q[X].

Exercise 17.40. Let F be a field, and consider the ring of bivariate polyno-
mials F [X, Y]. Show that in this ring, the polynomial X2+Y2−1 is irreducible,
provided F does not have characteristic 2. What happens if F has charac-
teristic 2?
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Exercise 17.41. Design and analyze an efficient algorithm for the following
problem. The input is a pair of polynomials a, b ∈ Z[X], along with their
greatest common divisor d in the ring Q[X]. The output is the greatest
common divisor of a and b the ring Z[X].

Exercise 17.42. Let a, b ∈ Z[X] be non-zero polynomials with d :=
gcd(a, b) ∈ Z[X]. Show that for any prime p not dividing lc(a) lc(b), we have
d̄ | gcd(ā, b̄), and except for finitely many primes p, we have d̄ = gcd(ā, b̄).
Here, d̄, ā, and b̄ denote the images of d, a, and b in Zp[X].

Exercise 17.43. Let F be a field, and let f, g ∈ F [X, Y]. Define V (f, g) :=
{(x, y) ∈ F × F : f(x, y) = g(x, y) = 0F }. Show that if f and g are
relatively prime, then V (f, g) is a finite set. Hint: consider the rings F (X)[Y]
and F (Y)[X].

17.9 Notes

The “(1 + i)-ary gcd algorithm” in Exercise 17.33 for computing greatest
common divisors of Gaussian integers is based on algorithms in Weilert
[100] and Damg̊ard and Frandsen [31]. The latter paper also develops a
corresponding algorithm for Eisenstein integers (see Exercise 17.26). Weilert
[101] presents an asymptotically fast algorithm that computes the greatest
common divisor of `-bit Gaussian integers in time O(`1+o(1)).


